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Abstract: This paper‘ addresses  the  iterative 
decoding analysis,  design,  and  performance of low 
complexity  turbo  like  codes.  For  analysis, we model 
the  density of extrinsic  information in iterative  turbo 
decoders  by Gaussian  density  functions. W e  view  the 
evolution of these  density  functions  through  the  iter- 
ative decoding of turbo-like codes as  a  nonlinear  dy- 
namical  system  with  feedback.  Iterative decoding of 
turbo codes and  serially  concatenated codes are first 
analyzed based on  this  method for large block size. A 
discussion  is  presented for short block sizes.  Then 
the  analysis i s  generalized to serial  concatenations 
of mixtures of different  outer  and  inner  constituent 
codes.  Design  examples are given  to  optimize  mixture 
codes to achieve  low  iterative decoding thresholds  on 
signal-to-noise  ratio.  Finally, based on  our analy- 
sis  we  propose  a  guideline for selection of component 
codes appropriate for iterative  decoding. 

Keywords:  turbo-like  codes,iterative  decoding  anal- 
ysis, concatenated  code  mixtures. 

1. Introduction 

In  this  paper, we analyze turbo codes and seri- 
ally  concatenated  codes by approximating  the den- 
sity  functions for the extrinsics  as  Gaussian  densities, 
and  then  computing  the  mean  and variance in  the 
Gaussian  density  evolution. This approximation was 
used to obtain  a  threshold  on  minimum  bit signal- 
to-noise ratio &/No for LDPC codes [4], based on 
using only the means of Gaussian  densities. First we 
determine  the  input  and  output Gaussian  means and 
vari nces of the individual SISO modules by simula- 
tion. fi Similar method4= used by El Gama1 [l]. For 
concatenated codes with two component codes such 
as  parallel  and  serial turbo codes, we can  plot the 
output SNR versus the  input  SNR for one compo- 
nent  decoder, and  the  input SNR versus the  output 
SNR for the  other component  decoder. If the two 
curves do  not  cross, then  the  iterative decoder con- 
verges. 

lThis work was funded by the  TMOD Technology Pro- 
gram and performed at  the  Jet Propulsion  Laboratory, Cal- 
ifornia Institute of Technology under  contract  with the Na- 
tional  Aeronautics and Space Administration. 

We used all the assumptions  made by Richardson 
and Urbanke for very large block sizes (essentially 
when the block size and  the  number of iterations go 
to infinity but  the  number of iterations is much less 
than roughly the log of the block size correspond- 
ing to  the  girth of the  graph representing the overall 
code, then  the effects of cycles on  performance  can 
be  ignored). A concentration  theorem [ll], [6] can 
be used to make  these  results  more rigorous. The 
concentration  theorem  says that  the average bit  er- 
ror probability  concentrated  around the ensemble av- 
erage of the bit  error  probability over all possible 
graphs  representing  a given code, or over all inter- 
leavers in the case of turbo codes, when the block  size 
goes to infinity. Such convergence is exponential  in 
the block size, and,  as  the block size goes to infinity, 
the graphs  representing the code can  be considered 
loop-free (locally tree-like). Such an  assumption for 
turbo codes was argued  in [6], based on  the decay 
of dependencies of messages that  are far apart from 
each other  on  the trellis  (similar to  the concept of 
finite-length  traceback  in  Viterbi  decoding). 

2. A Model for Decoder Convergence 

Consider a  parallel or a  serial turbo code  with two 
constituent  encoders. The  turbo decoder is based on 
two SISO modules  [2]. The iterative  decoder  can  be 
viewed as a  nonlinear  dynamical feedback system. 
Extrinsic  information messages are passed from one 
decoder to  the  other. 

With large  interleavers, the extrinsic  information 
messages are  independent  and  identically  distributed, 
given, say that  the all-zero codeword is transmitted 
(corresponding to, say, transmission of +l’s on the 
channel).  Each message is modeled by a  Gaussian 
random  variable  with  mean pi and variance 0: at 
the  ith  iteration,  and  the signal-to-noise ratio  (SNR) 
of this  random variable is defined as  SNR = p ! / c : .  
If the consistency  assumption is used, then 0: = 2 p i .  

Consider the  input  and  output SNR’s for each 
decoder at each iteration  as shown in  Fig. 1. These 
are  denoted SNRli,, SNRlout, SNR2in, SNR2,,t, 
and  they represent the SNR’s  associated  with the ex- 
trinsic  information messages, not  the  SNR associated 
with the channel  observations. A nonzero &,/No 
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Figure  1: Analysis of turbo decoding  as  a nonlin- 
ear  dynamical  system  with feedback using Gaussian 
density  evolution. 

from the channel  enables  decoder 1 to produce  a 
nonzero SNRlout for the  output extrinsic informa- 
tion  despite starting  with  SNRli, = 0. For a given 
value of &/No, the  output  SNR of each decoder is 
a  nonlinear  function of its  input  SNR, denoted by 
G1 for decoder 1 and G2 for decoder 2 as shown 
in  Fig. 1. We have SNRlout = G1(SNRlin,Eb/No) 
and SNR2,,t = G2(SNR2in, &,/No). Also, 
SNR2in - - SNRlout,  and  thus 

We can  test  the decoder convergence by plotting 
the  output SNR of decoder 1 versus its  input SNR, 
and  the  input SNR of decoder 2 versus its  output 
SNR,  as shown in  Fig. 2. In  this figure we considered 

SNR2out = G ~ ( G I ( S N R ~ ~ ~ ,  Eb/NO), Eb/No). 
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Figure 2: Iterations  and convergence of a turbo de- 
coder. 

a rate  1/3 CCSDS turbo code [7] consisting of two 16- 
state  systematic recursive convolutional codes. En- 
coder 1 is rate 1/2,  and encoder 2 is rate 1, as  its sys- 
tematic  bits  are  punctured to  make the overall code 
rate  1/3.  The  upper curve corresponds to  the input- 
output function G1 for decoder 1, and  the lower curve 
corresponds to GY1 for decoder 2. 

Figure 2 also graphically shows the progress of the 
decoder's  iterations.  The  improvement in the SNR 

of the extrinsic  information,  and the corresponding 
improvement in the decoder's  bit  error rate, follows 
a  staircase  path reflecting at  right angles between 
the curves corresponding to  G1 and GT1. The  steps 
in  this  staircase  are  large when the bounding curves 
are far apart,  and small when they  are close together. 
Where the curves are closest together,  the improve- 
ment  in  bit  error rate slows down, as many  itera- 
tions  are required to  bore  through the narrow itera- 
tive decoding tunnel between the curves. If the itera- 
tive decoder successfully passes through  the  tunnel, 
convergence becomes very rapid as the two curves 
get  farther  and  farther  apart a t  higher SNRs.  This 
means that  as  the block size goes to  infinity the bit 
error rate goes to  zero as  the number of iterations 
increases. 

SNRli, = 0 is dependent  on the &/No due to  the 
channel  observations. If  we reduce Eb/No from the 
value of 0.8 dB used in  Fig. 2, then  at some point the 
two curves will just  touch each other.  That value of 
&/No represents the iterative  decoding  threshold. 
The iterative  decoding  tunnel will be closed at  the 
SNR where the two  curves  touch, and  the staircase 
path will not go past  this  point.  The  bit error rate 
will settle  to a  nonzero value determined by this fi- 
nite  SNR. Conversely, if &/No is  greater than  this 
threshold the decoder converges and  the bit  error 
rate goes to  zero as the  iterations increase. 

The  initial displacement of the G1 curve for 

3. Concatenated  Codes  with Mixed In- 
ner  or Outer Codes 

The analytical  method  can also be applied to dis- 
cover combinations of constituent  codes whose in- 
dividual strengths  and weaknesses complement each 
other. Turbo-like concatenated codes can  then be 
constructed using a mixture of such  complementary 
constituent codes that outperform codes formed from 
either  constituent  alone. 

An example of constituent codes suitable for such 
a  construction is the following. A repetition-3  outer 
code is serially  concatenated  with two possible rate-1 
inner  codes, through  an infinitely long  random  in- 
terleaver.  One  code is the two-state  accumulator 
code (octal  1/3),  and  the second is a  four-state code 
(octal 5 / 7 ) .  The overall code rate in each case is 
1/3.  When  the inner  code is the accumulator  code, 
this code can  be  analyzed using the  SNRout versus 
SNRin characteristics of the individual  constituent 
codes, as shown in Figure 3. The SNR  characteris- 
tic of the outer  repetition-3  code is a  straight line 
with slope 1/2. The  SNR  characteristic of the accu- 
mulator  code  has  slope lower than 1/2 for small val- 
ues of input  SNR,  and  its slope increases very slowly 
with  increasing input  SNR. An Eb/No of 0.49 dB is 
just sufficient to  keep open  a long narrow  tunnel for 
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Figure 3: Example of a  concatenated  code  with 
mixed inner codes. 

successful iterative  decoding. Thus, a  great  many 
iterations  are  required when Eb/No is close to  this 
code's  iterative  decoding  threshold.  In  contrast,  the 
slope of the SNR  characteristic of the rate-1 four- 
state code is much higher than 1 /2  in the SNR region 
where the accumulator is having the most difficulty. 
If this more powerful 4-state  code were to replace 
the 2-state  accumulator as  the inner  code, the itera- 
tive decoder would converge much faster  and  at lower 
&,/No once the inner  code's  SNR  increased past a 
value of roughly 1. Unfortunately, the performance 
of the 4-state,  octal 5/7 code falls apart completely 
at low values of input  SNR. At the  initial  iteration, 
when the  input SNR  of the extrinsics is equal to zero, 
the  output SNR  for this code is also zero, because 
the code is rate-1  and  it includes  a  nontrivial feed- 
forward polynomial. In  this case, the value of each 
input  bit is dependent  on  an infinite  number of chan- 
nel symbols, and  there is no  redundancy  in  the code 
to  help out.  The result is that  the information from 
the channel is completely useless without some ad- 
ditional  extrinsic  information to modify the a priori 
probabilities. In  contrast, a  decoder for the lowly 
accumulator  code is able to  start  its iterations  with 
a  modest nonzero output  SNR, because  in this case 
there is no feedforward component,  and each input 
bit is only dependent  on the values of two successive 
symbols from the channel. 

An improved concatenated  code  can  be formed 
by using a  mixture of the accumulator code and  the 
octal 5/7 code as the inner  code.  Figure 3 also shows 
the SNR  characteristic of a mixed inner code for 
which 60% of the  input  bits  are encoded by the ac- 
cumulator  and 40% are  encoded by the  octal  5/7 
code. This mixed code  gets some nonzero initial 
output SNR from its accumulator  component, and 
thus avoids the  startup problem of the pure 5/7 in- 
ner code. At the same time,  its SNR  characteristic 
curve picks up some of the higher slope and  sharper 

curvature of the  5/7 code's  curve, thus shortening 
and widening the iterative  decoding  tunnel  at &/No 
= 0.49 dB, which results  in  faster  decoder conver- 
gence and allows the iterative  decoding  threshold to  
be reduced  further.  Figure 4 shows the SNR  charac- 
teristic  curves for the same codes in  Figure 3 when 
&/No is reduced to  0.00 dB. From this figure we 

Figure 4: Reduced  decoding  threshold for a  concate- 
nated code  with mixed inner codes. 

see that &,/No = 0 dB is  just sufficient to decode 
the concatenated  code  formed from the 60-40  mix- 
ture,  but  it is clearly below the iterative decoding 
threshold when either  inner  constituent  code is used 
without the  other. 'The optimum mixing proportion 
was obtained by evaluating the SNR  characteristic 
for different mixes. In  this case,  almost  a half-dB 
of improvement  is  obtained by mixing the two inner 
codes in an  optimal  proportion. 

The analysis method for obtaining the SNR char- 
acteristic curves in the previous  two figures was based 
on two assumptions. First,  it was assumed that  the 
probability  density of the  output extrinsics from both 
the inner and  outer codes  can be  approximated as  
Gaussian at each iteration. Second, it was assumed 
from the consistency condition [3] that each Gaussian 
density is fully characterized by its  mean (i.e., SNR 
= mean/2). For the case of mixed codes, the assump- 
tion of a  pure  Gaussian  density a t  each step of the 
iterations seems to contravene the analysis. As sim- 
ilarly observed in [4] for irregular low-density parity 
check codes with  varying degrees of connectivity be- 
tween variable  nodes and check nodes, what might 
start  out  as a  pure  Gaussian  density  output from 
each of the inner  decoders becomes a  mixture of two 
Gaussians (at different means) when the outer  de- 
coder takes  outputs from two different inner decoders 
after passing through a  random infinitely long inter- 
leaver. Then a  mixture of two  Gaussians at  the  input 



of the repetition-3  outer  decoder becomes a  mixture 
of three  Gaussians at  the  output of the outer decoder 
or when fed to  the  input of the inner  decoder. Thus, 
for the case when the outer  code is a simple  repetition 
and  the inner code is a  mixture,  it is analytically es- 
tablished that a  pure  Gaussian  density at  the  output 
of the inner decoder will imply  a  non-Gaussian  den- 
sity at  the  output of the outer  decoder, and  thus  the 
assumption that  both  outputs  are purely  Gaussian 
cannot  be exactly  correct. However, it is empirically 
observed that a  pure  Gaussian  assumption at  each 
point in the iteration is nonetheless  a  robust model 
for determining  performance  thresholds. 

Next we consider an example showing that  it is 
also possible to  achieve a low decoding  threshold by 
using a  mixture of outer codes concatenated  with 
a single inner code. The inner  code in this exam- 
ple is a  4-state  rate-1 code (octal  1/7). Like the 
2-state  accumulator code, this code does not suffer 
from the extreme startup deficiency of the 4-state oc- 
tal  5/7 rate-1  code, because the  octal  1/7 code lacks 
multiple feedforward connections and each of its in- 
put  bits is affected by only three channel symbols. 
The  outer code is a  mixture of two  rate-1/2 codes, 
a simple repetition-2  code and a convolutional (5,7) 
code. The  optimal mixing proportion  in  this case is 
to send  about  2/3 of the bits to  the repetition code 
and  1/3 of the  bits to  the convolutional code. Fig- 
ure 5 shows the SNR  characteristics of the individual 
codes and  the  optimally mixed outer code. We see 
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Figure 5: Decoding threshold  near  capacity  limit 
for a  rate-1/2  concatenated code with mixed outer 
codes. 

that  the SNR characteristics  predict an  iterative de- 
coding threshold of about 0.5 dB, which is only about 
0.3 dB above the capacity  limit for rate-1/2 codes. 

Another rate-1/2 code with even lower complex- 
ity  and lower iterative  decoding  threshold  can  be con- 

structed as follows. Start with  an  outer recursive 
convolutional code, octal  (1,5/7). Send  two-thirds of 
the parity  bits  (using a 100 puncturing  pattern) di- 
rectly to  the channel.  Send the remaining  one-third 
of the parity  bits  and  all  of the systematic  (informa- 
tion)  bits  through  an (infinitely  long) interleaver to  
an inner  2-state  rate-1  accumulator code. Figure 6 
compares the iterative  decoding  performance of this 
code  with that of a  more  straightforward serial con- 
catenation of the  octal  (1,5/7) code (unpunctured) 
with the 2-state  accumulator code. We see that  the 

5 

Figure 6: Decoding threshold  near  capacity  limit for 
a  hybrid  concatenated  code. 

straightforward  serial  concatenation  requires  a mini- 
mum Eb/No of 0.85 dB, because the  sharp  curvature 
of the SNR  characteristic of the outer  (1,5/7) convo- 
lutional  code  requires the inner  accumulator code to  
have a  fairly high starting  output SNR value. The 
SNR  characteristic of the hybrid  outer  code,  sending 
two of every six  bits  directly to  the channel,  is  not 
as  sharply  curved.  This  hurts  the convergence rate 
a t  high SNR, but  it widens the iterative decoding 
tunnel at  its narrowest  constriction  and  thus allows 
the  accumulator's  characteristic curve to drop  sub- 
stantially. Successful iterative  decoding for the  this 
rate-l/2 code can  take place at  an Eb/No of about 
0.45 dB,  just 0.27 dB above the capacity  limit. 

4. Analytic Estimates of Gaussian Den- 
sity  Evolution for 2-state  Constituent 
Codes 

Analytic expressions for the evolution of the mean 
value of the extrinsics  can be  obtained for concatena- 
tions using 2-state  constituent codes. The analysis 
method  parallels that used in [4] for LDPC codes. 
Consider a  linear block code,  assume that  the all- 



* zero codeword is transmitted,  and use the mapping 
0 -+ 1, 1 4 -1 for transmission  through  a  binary 
input AWGN channel. 

4.1. Analysis for LDPC codes 
For iterative decoding of LDPC codes using a 

belief-propagation  network, there  are two types of 
nodes and  three  types of extrinsic  information mes- 
sages. There  are variable nodes corresponding to 
coded symbols and check nodes corresponding to  the 
parity check equations.  The variable nodes send mes- 
sages w to  the check nodes and receive messages X, 
from the channel and u from the check nodes. The 
check nodes send messages u to  the variable nodes 
and receive messages w from the variable  nodes. 

The message w going from a  variable  node to a 
given check node is computed  as a linear sum of the 
incoming channel message and  the extrinsic messages 
from the  other check nodes. 

d,, -1 

m=l 

where d, is degree of the variable  node, and {u,, m = 
1 , .  . . d, - 1) are the incoming messages from the 
d, - 1 other check nodes  connected to  the given vari- 
able  node. The message going from a check node to a 
variable  node is computed as a nonlinear function of 
the extrinsic messages from the other  variable nodes 
connected to  this check node. For the sum-product 
algorithm,  the result is expressed as 

d,-1 

tanh (:) = tanh (F) (2) 
m=l 

Using the  Gaussian  approximation  and the con- 
sistency  condition, we only need to  compute  the mean 
of the extrinsic messages. The mean 3 of the mes- 
sage from a  variable  node to  a check node is simply 
the sum of the mean X, of the channel message and 
the means ii of the incoming messages {urn} from the 
other check nodes, 

V = X, + (d, - 1)ii (3) 

For an AWGN channel, X, = 5, where & = %. 
At the next step  in  the  iterative process, the mean 

ii of the message from a check node back to  a variable 
node is computed by averaging (2) over the assumed 
Gaussian  densities for u and {urn}. Define $ ( p )  to 
be the average of tanh(y/2) over a  Gaussian  random 
variable y with  mean p and  variance  2p, 

In  terms of $(.) the  update  equation for the mean of 
a message from a check node to a  variable  node is 

$ ( i i )  = [IC, (V)ld"" (5) 

Here we have assumed that  the variable  node mes- 
sages {urn} and  the check node messages {urn} all 
have the same  means, and i i ,  respectively. These 
update  equations for LDPC codes have been  obtained 
in [4]. 

4.2. Analysis for concatenated codes 
with  2-state inner codes 

Analytic  computation of the evolving mean of the 
extrinsic  information messages for a  concatenated 
code  with  convolutional  constituent codes is in gen- 
eral  a difficult problem.  Approximate  solutions have 
not produced  accurate  computations of iterative de- 
coding thresholds. 

We consider two versions of the 2-state convolu- 
tional  code, the rate-1  accumulator  code,  octal  (1/3) 
and  the  rate-1/2 recursive convolutional  code, oc- 
tal  (1,1/3).  Although convolutional codes are con- 
ventionally  constructed on a  trellis,  these  2-state codes 
have simple Tanner  graph  representations [8] with- 
out loops. This  graph  representation is shown in 
Fig. 7. Here the nodes  corresponding to  the parity 

Figure 7: Tanner  graph for a  2-state convolutional 
inner  code, used to  calculate  extrinsic-information 
messages corresponding to  input information  bits. 

bits  and  the information bits play the role of the vari- 
able  nodes for LDPC codes, and  they  are connected 
through  a  set of check nodes. 

We use the 2-state  convolutional  code,  either rate- 
l or rate-1/2,  as the inner  code of a  serial  concatena- 
tion or as one of the  constituent codes of a parallel 
concatenation. The  input  extrinsic information cor- 
responding to  the  j th information  bit  is  denoted &,j, 

and we wish to compute the  output extrinsic infor- 
mation X o , k  for bit k .  The message from the channel 
corresponding to  the  kth  parity  bit is denoted XL,k 

and  the message from the channel  corresponding to  
the (systematic)  information  bit is denoted by OX:,,, 
where 8 = 1 for the case of the rate-1/2  code,  and 
8 = 0 for the  rate-1  accumulator code. We also define 



intermediate messages {u j} ,  { u j }  between the check 
nodes  and the variable  nodes  associated  with the par- 
ity  bits,  and  intermediate messages {wj}, { z j }  be- 
tween the check nodes and  the variable  nodes asso- 
ciated  with the information bits, as indicated  in  the 
figure. We can use the message passing  algorithm to 
write  the following expressions. At the variable  node 
corresponding to  the  kth  parity  bit,  the message z’k 

sent to  the  kth check node is given by u k  = uk + A k , k .  

At the  kth check node,  the message wk sent to  the 
node  corresponding to  the  kth information bit is de- 
termined by tanh(wk/2) = tanh(uk-l/2)  tanh(Uk/2). 
At the ( j  + 1)th check node,  the message uj sent to 
the node  corresponding to  the  j th parity  bit is deter- 
mined by tanh(uj/2) = tanh(uj+l/2)  tanh(zj+l/2). 
At the variable  node  corresponding to  the  j th infor- 
mation  bit,  the message zj  sent to  the  j th check node 
is given by z j  = Ai,j  + At the variable  node 
corresponding to  the  kth information  bit,  the  out- 
put extrinsic  information message Ao,k is computed 
as ~ , , k  = Wk + 6AL,k. Using the linear  equations 
to eliminate {uj} ,  {wj}, and { z j } ,  we reduce  these 
relationships to two nonlinear  equations. 

tanh ( uk -:Ik) 

= tanh ( 2)  tanh ( uk+1 Ai,k+l + Ox:,,+, 
2 

and 

tanh ( ” ) = tanh (1) tanh (T) Ao,k - OX,,, uk-1 

( 7 )  
With large  code  blocks, we can  argue that aver- 

ages over the various types of messages will be  in- 
dependent of the  bit location k .  Taking the steady- 
state averages of these  two  expressions  produces  first 
an  equation to be solved for the mean ?j of the mes- 
sages {uk}, in terms of the mean Xi of the  input 
extrinsics Ai$ and  the mean 1, = 5 of the channel 
messages Ak,kl A:,k, 

$ (e  - X,) = $ ( e )  $ (Xi + OX,) ( 8 )  

and second an  equation for the mean X, of the  output 
extrinsics A0.k , 

4.3. Analysis for doubly serial 
concatenations of 2-state codes 

We can  also use the  2-state convolutional  code, 
rate-1 or rate-1/2,  as  an  outer  code or more gener- 
ally as  the middle  code of a  serial  concatenation of 

three  codes [9],  [lo]. Again we use a  Tanner  graph 
representation for the 2-state  convolutional  code.  In 
the general  case there  are two types of output  extrin- 
sic messages that must  be  analyzed,  corresponding to 
the information  bits and  to  the  parity  bits. 

almost  identical to  that of Fig. 7, except that  the 
input messages from the channel X&, A:,k are re- 
placed by input extrinsic-information messages Ai ,&,  
OX::, from an inner  code,  corresponding to  the parity 
bits  and  the  (systematic)  information  bits (if rate- 
1/2), respectively. There  are also input extrinsic- 
information messages Ai,k from an outer  code, cor- 
responding to  the information  bits. Now the  output 
extrinsic messages Xo,k depend  on  all  three  types of 
input extrinsic  messages, and  the mean io of the 
output messages is in general  a functio: of the cor- 
responding  means Xi,  Xi, &’ of Ao,k,  A ~ , ~ ,  A::~, re- 
spectively. To determine x,, first solve the following 
equation for V .  

$(V - x:) = $ ( V ) $ ( i i  + ox;) (10) 

Then  the solution v can  be used to calculate x, as 
the solution of 

$(io - O i l ’ )  = [ $ ( 0 ) ] 2  (11) 

for the  output extrinsics of the  input  bits to a  middle 
code, and 

$(X, - Xi) = [$(.)I2 (12) 

for the  output extrinsics of the systematic  output 
bits of a  middle or outer code. 

The  graph  representation for computing  the ex- 
trinsic messages corresponding to  the parity  bits is 
shown in  Fig. 8. Now the objective is to compute 

0 0  
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infomalion bits 

Figure 8: General  Tanner graph for a  2-state con- 
volutional  “middle”  code, used to calculate output 
extrinsic-information  messages  corresponding to out- 
put  parity  bits. 

an  output extrinsic-information message corre- 
sponding to one of the  parity  bits, given input extrinsic- 
information messages Ai ,k  from the  input informa- 
tion  bit  and OAi,k,, from the  output  systematic  bit 
(nonzero for rate-1/2).  The message flow in this 
graph  produces the linear  equations Zk = Ai,k+6X;,k, 



5 ,  

v u k  = uk-1 + x i , k - l l  and x:,,, = Uk + U k + l ,  and the 
nonlinear  equation, tanh(uk/2) = tanh(wk/2) tanh(zk/2). 
Using two of the linear  equations to eliminate u k  and 
zk reduces this  to 

tanh (F) = 

Again we assume a steady-state condition  such that 
averages  are  independent of bit  location IC, and ob- 
tain  the following equation to be solved  for the mean 

of Uk ,  

Finally the mean x: of the  output extrinsic-information 
messages for the  parity  bits is computed  in  terms of 
I? by averaging the one  remaining  linear  equation, 
x:,,, ='Uk + 'zLk+l, to  obtain 

"I x ,  = 26 

The  results in this section  are for a  general con- 
figuration  where the  2-state code is situated  amidst 
a  series of concatenations. For the  rate-1 accumu- 
lator  code,  set 0 = 0 ,  or set e = 1 for the  2-state 
code  with rate-1/2. If the code is used as  an  outer 
code, set xi = 0. If the entire  output of the  rate-1/2 
code is serially  concatenated  through an infinitely 
long  random  interleaver  with an inner  code, then we 
can also set X i  = X i  . However, we can  also gen- 
erally allow # x: to model the case where the 
rate-1/2  code's  systematic  bits  and  parity  bits  are 
sent  through  separate  interleavers to different  inner 
codes. In  particular,  this applies to a  code  concate- 
nation that sends the systematic  bits  uncoded to  the 
channel, while permuting  the  parity  bits  and sending 
them  to  another layer of coding. 

An example of this analysis  method  applied to 
a  2-state code used in  a  doubly  serial  configuration 
is shown in Figure 9. This is a  rate-1/3  systematic 
code  obtained by sending  one copy of the informa- 
tion  bits to  the channel  and  two copies through  a 
series of two rate-1  accumulators  preceded by in- 
terleavers.  Compared to  the  rate-1/3  repeat-and- 
accumulate (RA) code  in  Fig.  3, the  "repeat-and- 
doubly-accumulate"  (RDA)  code  in this figure  has  a 
slightly lower iterative  decoding  threshold of about 
0.4 dB.  The curves in Fig. 9 analyze this code in 
two pieces, with the innermost  rate-1  accumulator as 
one  constituent  and  the  rest of the code as the sec- 
ond.  The  SNRout versus  SNRin  characteristics of 
these two pieces are shown along  with the  straight- 
line  characteristic of the  repetition-3  outer code used 
in  the  construction of the plain RA  (Repeat Accu- 
mulate) code [12] in  Fig.  3. We see from the fig- 
ure that  the  SNR  characteristic of the  repetition-3 

-, "I, 

I RDA code 
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Figure 9: Iterative decoding  threshold  analysis  for 
rate-1/2  LDPC codes. 

outer  code just barely  intersects  the SNR character- 
istic of the  rate-1  accumulator code. This produces 
a  slightly  higher &,/No iterative  decoding  threshold 
for the plain RA code.  More  significantly, the SNR 
characteristic of the  stronger  outer code defined in 
Figure 9 curves  sharply away from the  straight-line 
characteristic of the repetition-3  code.  This  shortens 
the iterative  decoding  tunnel  and  enables  the  itera- 
tive  decoder to converge much  faster. 

Figure  10 shows simulated  performance  results for 
the  rate-1/3 RDA code  compared to performance  re- 
sults for the  rate-1/3 RA code and RDD codes. 

1 0 0  1 

rate=l/3 

20 iterations 
k=lO24 

Figure 10: Simulation  results for rate-1/3 RA, RDD, 
and RDA codes. 



t 5. Conclusion 

We modeled the density of extrinsic  information 
in  iterative  turbo decoders by Gaussian  density func- 
tions,  and used this model to analyze the convergence 
of iterative decoding for turbo codes and for serially 
concatenated codes. Having identified the  strengths 
and weaknesses of particular  inner  and  outer con- 
stituent codes through  their  input-output SNR  char- 
acteristics, we then generalized the analysis to  in- 
clude serial  concatenations of mixtures of different 
outer  and inner  constituent codes. Such mixtures al- 
low us to design better  constituent codes that exhibit 
more of the  strengths  and fewer of the weaknesses of 
the individual  components of the mix. The  input- 
output SNR  analysis  method provides good graph- 
ical insight into  understanding how to choose mix- 
ture components that complement each other. We 
gave examples of simple rate-1/2  and  rate-1/3 mix- 
ture configurations, using component codes with at  
most four states,  that  approach  their respective ca- 
pacity  limits  within  0.3 dB  to 0.5 dB. 

While the general  method for determining the 
constituent codes’ input-output SNR  characteristics 
was by Monte Carlo  simulation, we also gave analytic 
expressions for these curves for the  particular case of 
a  2-state  constituent.  These expressions cover both 
the rate-1,  octal  (1/3)  accumulator code and  the 
rate-1/2,  octal (1,1/3) recursive convolutional code, 
used in  any  concatenation  configuration,  whether as 
an inner code, an  outer code,  or  as  a middle code 
in  a series of more than two  concatenated codes. To 
extend  these  analytic  results to more complex con- 
stituents,  the evolution of the mean of the extrin- 
sic information  can  be  approximately  computed from 
stage to stage of a general code  trellis, but  the ap- 
proximation  requires ignoring a  normalization  factor, 
and  to  date we have not  found this  method  to give 
satisfactory  predictions of decoding  thresholds. 
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